

Features

- Hot-pluggable SFP Footprint
- Fully Metallic Enclosure for Low EMI
- Low Power Dissipation
- Compact RJ-45 Connector Assembly
- Detailed Product Information in EEPROM
- Access to Physical Layer IC via 2-wire Serial Bus
- Support 10/100/1000 BASE-T with SGMII Interface
- Pass withstand voltage test (AC 1.5KV & DC 2.25KV) and insulated resistance $> 2M\Omega$
- Compliant with SFP MSA
- Compliant with IEEE Std 802.3-2018
- Compliant with FCC 47 CFR Part 15, Class B
- Compliant with RoHs.
- +3.3V Single Power Supply
- Temperature range: 0° C to $+70^{\circ}$ C or -40° C to $+85^{\circ}$ C

Application

- 10/100/1000Mbps Ethernet over Category 5 Cable
- Distributed multi-processing
- High speed I/O for file server or high-end workstation
- Switch/Router to Switch/Router Link

Description

The 10/100/1000Base-T or 1000Base-T only SFP Copper Transceiver named as ASFPT-TxC-HV is high performance, cost effective module, compliant with the Gigabit Ethernet and 1000BASE-T standards as specified in IEEE 802.3-2018 and IEEE 802.3ab, which supports 1000 Mb/s data-rate up to 100 meters reach over twisted-pair category 5 cable. ASFPT-TxC-HV supports 1000 Mb/s full duplex data-links with 5-level Pulse Amplitude Modulation (PAM) signals. All four pairs in the cable are used with symbol rate at 250 Mb/s on each pair. This version has been compliant with withstanding voltage isolation requirements.

In addition, ASFPT-TxC-HV provides standard serial ID information compliant with SFP MSA, which can be accessed with address of A0h via the 2-wire serial CMOS EEPROM protocol. The physical IC can also be accessed via 2-wire serial bus at address ACh. The address of the PHY IC is 1010110x, where x represents the read or write bit.

Page 1 of 11 Version 1.5 Date: 1/3/2024 Headquarters:

3 Tzu Chiang Road, Hsinchu Industrial Park, Hukow,

Hsinchu Hsien, Taiwan 303 TEL: +886-3-5986799

Ordering Information

PART NUMBER	MAC INTERFACE	SPEED	LOS FUNCTION	OPERATING TEMP.
ASFPT-T1C-HV	1.25Gbps SerDes	1000 Mbps only	Enabled	
ASFPT-T2C-HV	1.25Gbps SerDes	1000 Mbps only	Disabled	= 0°C to $+70$ °C
ASFPT-T3C-HV	SGMII without clock	10/100/1000 Mbps	Enabled	0 C to +/0 C
ASFPT-T4C-HV	SGMII without clock	10/100/1000 Mbps	Disabled	_
ASFPT-T1C-I-HV	1.25Gbps SerDes	1000 Mbps only	Enabled	
ASFPT-T2C-I-HV	1.25Gbps SerDes	1000 Mbps only	Disabled	-40° C to $+85^{\circ}$ C
ASFPT-T3C-I-HV	SGMII without clock	10/100/1000 Mbps	Enabled	-40 C to +85 C
ASFPT-T4C-I-HV	SGMII without clock	10/100/1000 Mbps	Disabled	

Note:

- 1) ASFPT-T1C-HV, ASFPT-T2C-HV, ASFPT-T1C-I-HV and ASFPT-T2C-I-HV 1000 Mbps with a SerDes interface that does not support SGMII, the module will operate at 1000 Mbps only.
- 2) ASFPT-T3C-HV, ASFPT-T4C-HV, ASFPT-T3C-I-HV and ASFPT-T4C-I-HV 10/100/1000 Mbps operation requires the host system to have an SGMII interface without clocks.
- 3) The above has the auto-negotiation advertised capabilities.

Absolute Maximum Ratings

PARAMETER	SYMBOL	MIN	MAX	UNITS	NOTE
Storage Temperature (Ambient)	Ts	-45	90	°C	
Storage Humidity	Hs	5	95	%	

Recommended Operating Conditions

PARAMETER	SYMBOL	MIN	MAX	UNITS	NOTE
Operating Temperature (Case)	T_C	0	70	°C	ASFPT-TxC-HV
Operating Temperature (Case)	T_{I}	-40	85	°C	ASFPT-TxC-I-HV
Operating Humidity	Но	10	85	%	
Supply Voltage	V_{CC}	3.14	3.47	V	Typ. 3.3V
Power Consumption	P	-	1.2	W	
Supply Current	I_{CC}	-	375	mA	
Surge Current	I_{surge}	-	30	mA	Hot Plug

Note:

- 1) Supply voltage range of $3.3V \pm 5\%$.
- 2) Power consumption and surge current are higher than the specified values in the SFP MSA.

Page 2 of 11 Version 1.5 Date: 1/3/2024 Headquarters:

3 Tzu Chiang Road, Hsinchu Industrial Park, Hukow,

Hsinchu Hsien, Taiwan 303 TEL: +886-3-5986799

General Specifications

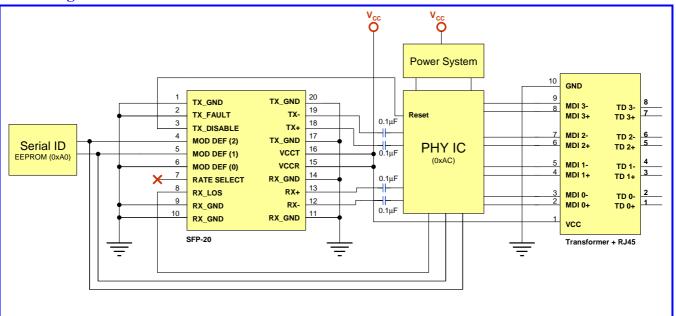
PARAMETER	SYMBOL	MIN	MAX	UNITS	NOTE
Distance	C_L	-	100	m	Category 5 UTP, BER <10 ⁻¹²
Data Rate	BR	10	1000	Mbps	

Electrical Characteristics

 $V_{CC} = 3.3 \text{ V}, T = -40 ^{\circ} \text{C to} + 85 ^{\circ} \text{C}$

PARAMETER	SYMBOL	MIN	TYP.	MAX	UNITS	NOTE
Transmitter						
Data Input Swing (Single ended)	$V_{D,TX}$	250	-	1200	mV	1
Differential Input Impedance	Z_{TX}	-	100	-	Ohm	
Transmitter Disable Input-High	V_{DISH}	2.0	-	$V_{cc}+0.3$	V	2
Transmitter Disable Input-Low	V_{DISL}	0	-	0.8	V	2
Receiver						
Data Output Swing (Single ended)	$V_{D,RX}$	300	-	800	mV	1
Differential Output Impedance	Z_{RX}	-	100	-	Ohm	
Data Output Rise/Fall Time	$T_{R,RX}/T_{F,RX}$	100	175	200	ps	3
LOS Output Voltage – High	VSDHL	V_{cc} -0.5	-	V _{cc} +0.3	V	2
LOS Output Voltage – Low	VSDL	0	-	0.5	V	2

Note:


- 1) Internally AC coupled, but requires a 100 Ohms differential termination at MAC side.
- 2) Pull up to V_{CC} with a 4.7K-10K Ohms resistor on host Board
- 3) 20% ~ 80% values

Page 3 of 11 Version 1.5 Date: 1/3/2024 Headquarters:

3 Tzu Chiang Road, Hsinchu Industrial Park, Hukow, Hsinchu Hsien, Taiwan 303

Block Diagram of Transceiver

LOS Function

The SFP MSA specification defines a pin called LOS to indicate loss of signal to the motherboard. This should be pulled up with a 4.7K to 10K resistor. Pull up voltage between 2.0V and Vcc-T/R+0.3V. When high, this output indicates link fail. Low indicates normal operation. In the low state, the output will be pulled to <0.8V.

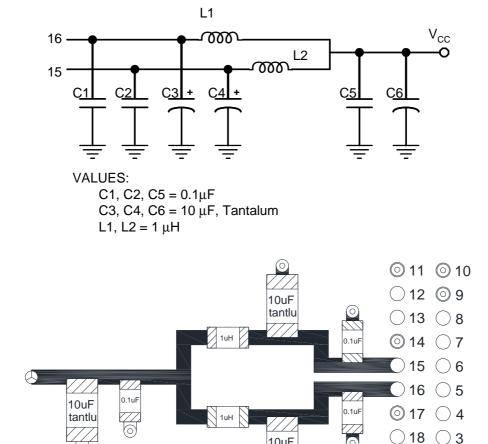
Termination Circuits

Inputs to the transceiver are AC coupled and internally terminated through 50 Ohms. These modules can operate with PECL or ECL logic levels. The input signal must have at least a 250mV peak-to-peak (single ended) signal swing. Output from the receiver section of the module is also AC coupled and is expected to drive a 50 Ohms load. Different termination strategies may be required depending on the particular Serializer/Deserializer chip set used. The transceiver is designed with AC coupled data inputs and outputs to provide the following advantages:

Close positioning of SerDes with respect to transceiver; allows for shorter line lengths and at Gigabit speeds reduces EMI. It has minimum number of external components. Internal termination reduces the potential for un-terminated stubs which would otherwise increase jitter and reduce transmission margin.

Subsequently, this affords the customer the ability to optimally locate the SerDes as close to the transceiver as possible and save valuable real estate. At Gigabit rates this can provide a significant advantage resulting in better transmission performance and accordingly better signal integrity.

Page 4 of 11 Version 1.5 Date: 1/3/2024 Headquarters:


3 Tzu Chiang Road, Hsinchu Industrial Park, Hukow,

Hsinchu Hsien, Taiwan 303 TEL: +886-3-5986799

Power Coupling

A suggested layout for power and ground connections is given in Figure 1 below. Connections are made via separate voltage and ground planes. The mounting posts are at case ground and should not be connected to circuit ground. The ferrite bead should provide a real impedance of 50 to 100 Ohms at 100 to 1000 MHz. Bypass capacitors should be placed as close to the 20 pin connector as possible.

Figure 1: Suggested Power Coupling

10uF tantlu

Serial Communication Protocol

Connected to VccConnected to GND

ASFPT-TxC-HV supports the 2-wire serial communication protocol defined in the SFP MSA and uses a 256-byte EEPROM with an address of A0h to store Table 1 data. The PHY IC can also be accessed via the 2-wire serial bus at address ACh.

Page 5 of 11 Version 1.5 Date: 1/3/2024 Headquarters:

3 Tzu Chiang Road, Hsinchu Industrial Park, Hukow,

 \bigcirc 19 \bigcirc 2

20

Hsinchu Hsien, Taiwan 303

EEPROM Serial ID Memory Contents

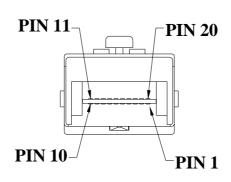
Accessing Serial ID Memory uses the 2 wire address 10100000 (A0h). Memory Contents of Serial ID are shown in Table 1.

Table 1 Serial ID Memory Contents

Addr.	Size (Bytes)	Name of Field	Нех	Description
0	1	Identifier	03	SFP or SFP+
1	1	Ext.Identifier	04	GBIC/SFP function is defined by two-wire interface ID only
2	1	Connector	22	RJ45
3-10	8	Transceiver	00 00 00 08 00 00 00 00	Transceiver Code
11	1	Encoding	01	8B/10B
12	1	BR(Nominal)	0D	1300Mbps
13	1	Rate Identifier	00	Unspecified
14	1	Length(SMFm)-km	00	N/A
15	1	Length(SMF)	00	N/A
16	1	Length(50µm)	00	N/A
17	1	Length(62.5µm)	00	N/A
18	1	Length(cable)	64	100(units of meters)
19	1	Length(OM3)	00	N/A
20-35	16	Vendor name	XX XX XX XX XX XX XX 20 20 20 20 20 20 20 20 20	Vendor name (ASCII)
36	1	Transceiver	00	Unallocated
37-39	3	Vendor OUI	XX XX XX	Vendor OUI
40-55	16	Vendor PN	XX	Transceiver part number
56-59	4	Vendor rev	XX XX XX XX	Vendor rev
60-61	2	Wavelength	00	0nm
62	1	Unallocated	00	Unallocated
63	1	CC_BASE	Check Sum (Variable)	Check code for Base ID Fields
64-65	2	Options	00 12	TX_Disable and LOS implemented
66	1	BR	00	max
67	1	BR	00	min
68-83	16	Vendor SN	41 34 32 30 33 30 30 34 20 20 20 20 20 20 20 20	Serial Number of transceiver (ASCII). For example "A4203004".
84-91	8	Date code	XX XX XX XX XX XX XX XX	Manufacture date code
92	1	Diagnostic Monitoring Type	00	N/A
93	1	Enhanced Options	00	N/A
94	1	SFF-8472 Compliance	00	Digital diagnostic function not
74	1	STT 6172 compliance		included or undefined
95	1	CC_EXT	Check Sum (Variable)	Check sum for Extended ID Field.

Note: The "XX" byte should be filled in according to practical case. For more information, please refer to the related document of SFP Multi-Source Agreement (MSA).

Page 6 of 11 Version 1.5 Date: 1/3/2024 Headquarters:


3 Tzu Chiang Road, Hsinchu Industrial Park, Hukow,

Hsinchu Hsien, Taiwan 303

Connection Diagram

Pin-Out

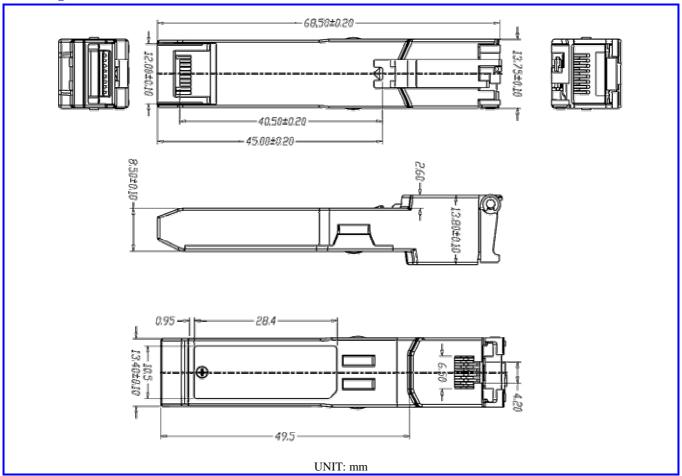
Pin	Signal Name	Function	Descript	Notes
1	VeeT	Transmitter Ground	VeeT and VeeR are connected in SFP.	7
2	TX_FAULT	Transmitter Fault Indication	Not supported.	1
3	TX_DISABLE	Transmitter Disable	Used for PHY chip reset, tied to VeeT.	2
4	MOD DEF (2)	Module Definition 2	Data Line (SDA) for Serial ID.	3
5	MOD DEF (1)	Module Definition 1	Clock Line (SCL) for Serial ID.	3
6	MOD DEF (0)	Module Definition 0	Grounded within the module	3
7	RATE SELECT	Not Implemented	No connection required.	
8	LOS	Loss of Signal	See LOS option.	
9	VeeR	Receiver Ground	VeeT and VeeR are connected in SFP.	7
10	VeeR	Receiver Ground	VeeT and VeeR are connected in SFP.	7
11	VeeR	Receiver Ground	VeeT and VeeR are connected in SFP.	7
12	RD-	Inverted Received Data out	AC coupled 100 ohm differential high speed data lines.	. 4
13	RD+	Non-Inverted Received Data out	AC coupled 100 ohm differential high speed data lines.	. 4
14	VeeR	Receiver Ground	VeeT and VeeR are connected in SFP.	7
15	VccR	Receiver Power	VccR and VccT are connected in SFP.	5
16	VccT	Transmitter Power	VccR and VccT are connected in SFP.	5
17	VeeT	Transmitter Ground	VeeT and VeeR are connected in SFP.	7
18	TD+	Non-inverted Data In	AC coupled 100 ohm differential high speed data lines.	. 6
19	TD-	Inverted Data In	AC coupled 100 ohm differential high speed data lines	6
20	VeeT	Transmitter Ground	Veet and VeeR are connected in SFP	7

Page 7 of 11 Version 1.5 Date: 1/3/2024 Headquarters:

3 Tzu Chiang Road, Hsinchu Industrial Park, Hukow,

Hsinchu Hsien, Taiwan 303 TEL: +886-3-5986799

Notes:


- 1. TX Fault is not used and is always tied to ground.
- 2. TX Disable as described in the MSA is not applicable to the 1000BASE-T module. Disable >2V or open, Enable < 0.8V.
- 3. Mod-Def 0, 1, 2 are the module definition pins. They should be pulled up with a 4.7-10K Ohms resistor on the host board to a supply between 2V and 3.6V.
- 4. RD-/+: These are the differential receiver outputs. They are ac coupled 100 Ohms differential lines which should be terminated with 100 ohm differential at the user SerDes. The ac coupling is done inside the module and is thus not required on the host board. The voltage swing levels are compatible with CML and LVPECL voltage swings.
- 5. VccR and VccT are the receiver and transmitter power supplies. They are defined as 3.3 V \pm 5% at the SFP connector pin.
- 6. TD-/+: These are the differential transmitter inputs. They are ac coupled differential lines with 100 Ohms differential termination inside the module. The ac coupling is done inside the module and is thus not required on the host board. The inputs levels are compatible with CML and LVPECL voltage swings.
- 7. Circuit ground is connected to chassis through the GND pad and SFP cage on main board.

Page 8 of 11 Version 1.5 Date: 1/3/2024 Headquarters:

3 Tzu Chiang Road, Hsinchu Industrial Park, Hukow, Hsinchu Hsien, Taiwan 303

Drawing Dimensions

Mating of SFP Transceiver to SFP Host Board Connector

The pads on the PCB of the SFP transceiver shall be designed for a sequenced mating as follows: First mate: Ground contacts. Second mate: Power contacts. Third mate: Signal contacts The SFP MSA specification for a typical contact pad plating for the PCB is 0.38 micrometers minimum hard gold over 1.27 micrometers minimum thick nickel. To ensure the long term reliability performance after a minimum of 50 insertion removal cycles, the contact plating of the transceiver is 0.762 micro (30 micro-inches) over 3.81 micro (150 micro-inches) of Ni on Cu contact pads.

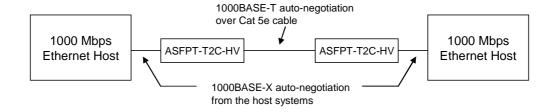
RJ45 Connector

RJ45 connector shall support shielded and unshielded cables. Also, the connector is mechanically robust enough and designed to prevent loss of link, when the cable is positioned or moves in different angles. The connector shall pass the "wiggle" RJ45 connector operational stress test. During the test, after the cable is plugged in, the cable is moved in circle to cover all 360 deg in the vertical plane, while the data traffic is on. There shall be no link or data loss.

Page 9 of 11 Version 1.5 Date: 1/3/2024 Headquarters:

3 Tzu Chiang Road, Hsinchu Industrial Park, Hukow,

Hsinchu Hsien, Taiwan 303 TEL: +886-3-5986799



Electrical Isolation (PMA-to-MDI Interface)

ITEMS	Condition Description	Criteria	Measured	Results
Withstand	1500 V rms at 50Hz to 60Hz for 60 s, applied as specified in subclause 5.2.2 of IEC 60950-1:2001.	T=25°C, H=65% Imax=1.0mA, Imin=0.00mA	Current 0mA	Pass
Voltage	2250 V dc for 60 s, applied as specified in subclause 5.2.2 of IEC 60950-1:2001.	T=25°C, H=65% Imax=1.0mA, Imin =0.00mA	Current 0mA	Pass
Insulation Resistance	The resistance after the test shall be at least 2 M Ω , measured at 500 V dc.	T=25°C, H=65% Rmax=9999MΩ, Rmin=2MΩ	> 2MΩ	Pass

Appendix:

Host machine can directly access PHY register to change the ASFPT operation mode via 2-wire serial bus. The PHY slave address is 0xAC. Some configurations are listed as the following table.

1. 10/100/1000BASE-T Enable (SGMII interface setting)

10/100/10002122 1 Zimete (2 civil) internate between			
Register Address	Write Data	Description	
0x1B	0x9084	Enable SGMII mode	
0x09	0x0F00	Advertise 1000BASE-T Full/Half-Duplex	
0x00	0x8140	Apply Software Reset	
0x04	0x0DE1	Advertise 100/10BASE-T Full/Half-Duplex	
0x00	0x9140	Apply Software Reset and enable auto-negotiation	

2. 1000Base-X Disable

Register Address	Write Data	Description
0x1B	0x808C	Change HWCFG_MODE to non-GBIC
0x00	0x8140	Apply Software Reset and disable auto-negotiation

Page 10 of 11 Version 1.5 Date: 1/3/2024 Headquarters:

3 Tzu Chiang Road, Hsinchu Industrial Park, Hukow,

Hsinchu Hsien, Taiwan 303 TEL: +886-3-5986799

3. 1000Base-X Enable (SerDes interface setting)

Register Address	Write Data	Description
0x1B	0x9088	Change HWCFG_MODE to GBIC
0x00	0x8140	Apply Software Reset and disable auto-negotiation

4. 1000Base-T Disable

Register Address	Write Data	Description
0x16	0x0001	Select Fiber Register Bank
0x00	0x8140	Disable Auto-negotiation
0x16	0x0000	Return to Copper Register Bank

Page 11 of 11 Version 1.5 Date: 1/3/2024 Headquarters:

3 Tzu Chiang Road, Hsinchu Industrial Park, Hukow, Hsinchu Hsien, Taiwan 303